
j'"

NASA-TM-I12313

_The American Society of

Mechanical Engineers

Reprinted From
MD-VoI. 43, Material Parameter Estimation for

Modern Constitutive Equations
Editors: L. A. Bertram, S. B. Brown, and A. D. Freed

Book No. H00848 - 1993

VISCOPLASTIC MODEL DEVELOPMENT WITH

AN EYE TOWARDS CHARACTERIZATION

Alan D. Freed
NASA Lewis Research Center

Cleveland, Ohio

Kevin P. Walker

Engineering Science Software, Inc.
Smithfield, Rhode Island

o _ -2 _ -7 _--

Abstract

A viscoplastic theory is developed that reduces analytically to creep theory under
steady-state conditions. A viscoplastic model is constructed within this theoretical frame-
work by defining material functions that have close ties to the physics of inelasticity. As a
consequence, this model is easily characterized---only steady-state creep data, monotonic
stress-strain curves, and saturated stress-strain hysteresis loops are required. The model

is applied to the copper alloy NARloy Z.

1 Introduction

In mankind's enduring pursuit to go faster and further with greater economy and safety in its

diverse variety of vehicles that travel across land and sea or through air and space, we are taxing
our materials to their utmost capabilities. Consequently, the need for accurate material models

to describe the wrious physical properties of a given material is much more critical in the design
and development of these vehicles than it has ever been, and this need can only be expected to

continue to grow.
The analysis of metallic response for high temperature apphcations requires mathemati-

cal models capable of predicting accurately the short-term plastic strains, the long-term creep
strains, and interactions between them. Viscoplastic models attempt to do that. Multiaxial,

cyclic and non-isothermal loading histories are normal service conditions, not exceptional ones,
all of which challenge the predictive capabilities of such models.

Prior to the advent of the computer, viscoplasticity was a theory in its infancy; however,
over the past two decades substantial advancements have been made to the theory. Because
of viscoplasticity's innate nature, which leads to systems of first-order, ordinary, differential
equations that are nonlinear, coupled and mathematically stiff, a unique mathematical structure

(like that of elasticity) is not to be expected. Nevertheless, these past two decades have given the

community a vast wealth of experience with a variety of evolution equations--what works, what
does not, and in many cases, some physical insight as to why. Using this experience base, we have

set out to develop a viscoplastic model whose predictive capabilities are in reasonable agreement
with experiments. A special emphasis in this development process was that the resulting model
must be characterized easily. The need to follow this requirement is vital. Experience has taught
us that a model's ease of characterization without calibration via exotic experiments is often
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considered by many industrial users of viscoplasticity to be of greater value than the model's

ability to predict accurately a material's behavior (within reason). We therefore seek to strike

a balance between accuracy and ease of characterization using physics as our guidepost.

The paper begins with a brief overview of the theories of elasticity and creep. This is

followed by a definition of viscoplastic flow and the introduction of the required internal state

variables. The next section demonstrates how a viscoplastic theory can be constructed to reduce

analytically to creep theory under steady-state conditions. This important section demonstrates

how a bridge between these two theories can be built--a concept that is not prevalent in the

viscoplastic literature. By building this bridge, the model not only has a stronger physical

base, but it also reduces substantially the complexity of material characterization. The section

that follows describes how the various internal state variables are assumed to evolve, and the

physical reasoning why they are so chosen. A succinct description of the viscoplastic model

ensues, which is followed by a section on how we go about characterizing our viscoplastic model.

For illustrative purposes, the copper alloy NAPdoy Z is modeled. This material finds applications

where moderate strength is required under conditions of very high heat flux, e.g. it is used as the

nozzle hner material in the main rocket engines of NASA's space shuttles where steep, rapidly

applied, thermal gradients cause large localized strains.

2 Elasticity

The stress, aij , is taken to be related to the infinitesimal strain, eij, through the constitutive

equations of an isotropic Hookean material, viz.

Sij = 2#(Eij - Q_) where _k -- 0, (1)

and

which are characterized by the shear, #, and bulk, a, elastic moduli, and where

Sij = a_j - 1/3 _kk 5ii and Eij= % - 1/3 %k _j (3)

denote the deviatoric stress and strain, respectively. The mean coefficient of thermal expansion,

a, acts on the difference between the current temperature, T, and some reference temperature,

To. The Kronecker delta, 5_j, has the value 1 if i = j, otherwise it is 0. Repeated Latin indices

are summed from 1 to 3 in the usual manner. Equation (1) characterizes the deviatoric stress

response, while Eqn. (2) characterizes the hydrostatic stress response. The plastic strain, Q_,

and thermal strain, a(T - To)_ij, are, in essence, eigenstrains that represent deviations from

deviatoric and hydrostatic elastic behaviors, respectively.

Young's modulus, E, and Poisson's ratio, v, are the two elastic constants that are usually

determined via experiment. The expressions,

E E

# - 2(1 + _,) and _ = 3(1 - 2v) ' (4)

define their interdependence with the elastic moduli of Eqns (1) and (2). Only two elastic moduli

are independent for elastically isotropic materials. Values for the elastic constants of NARloy Z

(typical composition: Cu-3%Ag-0.5%Zr) are given in Table 1.

3 Creep

The evolution of plastic strain which describes the classical theory of creep (ODQVIST, 1974) is

given by

S_j
_j[_._= V_II_ll,_ IlSll ' (5)
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Constant Units Value
a K -1 16.5 x 10 -6

#o MPa 52,000

/_1 MPa/K - 14
v -- 0.34

#=#0+#iT , TisinK

Table 1: Elastic constants for NARloy Z (Materials Properties Manual, 1986).

with the subscript 'ss' implying steady state, and where [IkP]]denotes the magnitude of plastic
strain-rate and [ISI[ denotes the magnitude of deviatoric stress. The subscript signifying steady
state is not attached to Sij because stress is a controllable external variable, whereas creep rate

is a response variable. This equation states that an increment in creep strain accumulates in
the current direction of the deviatoric stress. A dot is placed over a variable to signify its time

rate-of-change.
The norms, or magnitudes, pertaining to the deviatoric tensors of this paper are defined by

II11t= _z,j and IIJII= _ d_j, (6)

where Iij is any deviatoric 'strain-like' tensor, and Jij is any deviatoric 'stress-like' tensor.
These are the norms of VON MISES (1913), where the coefficients under the radical signs scale

the theory for shear.
In the theory of creep, IlgPllssis described by a kinetic equation, i.e. an equation of state.

ZENER and HOLLOMON (1944) determined that such a kinetic equation can, to a good approx-
imation, be decomposed into a product of two functions; in particular, at steady state

where _ > 0 is a thermal function, Z _> 0 is the Zener parameter, and C > 0 is a strength

parameter that normalizes the stress. The Zener parameter is a temperature normalized mea-
sure of the plastic strain-rate. Square brackets, [.], are used throughout the paper to denote
'function of', and are therefore kept logically separate from parentheses, (.), which are used for

mathematical groupings.
In the physical description of the thermal function, at, there is a parameter called the ac-

tivation energy, Q, which--for creep at low stresses and elevated temperatures--is associated
with self-diffusion where the rate-controlling mechanism for deformation is dislocation climb

(SHERBY and WEERTMAN, 1979). At higher stresses and/or more moderate temperatures,
the rate-controlling mechanism changes from diffusion-controlled dislocation climb to obstacle-

controlled dislocation glide (KOCKS et al., 1975). Along with this change in the deformation
mechanism, there occurs a change in the activation energy (SHERBY and BURKE, 1968). MILLER

(t976) approximates the observed temperature dependence of the activation energy for steady-
state flow with a linear function for temperatures below some threshold temperature, Tt, while

for temperatures above this threshold the activation energy is kept constant, in accordance with
the experimental observations of DORN (1954). Because it is the free energy (not the activation

energy) that drives the kinetics of plastic deformation (KOCKS et al., 1975), Miller integrated
his linear function for the activation energy and obtains the following Arrhenius-like expression
for the thermal function,

-Q T,

when T,_<T<T_

+ 1)] when 0<T_< Tt

(8)
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Figure 1: Steady-state creep behavior of NARloy Z. Data are from LEWIS (1970) with the
reported material composition: Cu-2.89%Ag-0.22%Zr.

where k is the universal gas constant (8.314 J/mole-K). The applicability of this relationship is
discussed elsewhere (FREED et al., 1992). The transition temperature, Tt, between these two
domains in activation energy is not unique; it is known to depend on the strain-rates used to
make the measurements for activation energy. An increase in strain-rate increases the transition

temperature (SHERBY and BURKE, 1968). For the vast majority of engineering applications,
a transition temperature of T t "_ 1/2T,_ seems appropriate for f.c.c, metals, and is used in our
characterization of NARloy Z.

When the mechanism for deformation changes from diffusion-controlled dislocation climb to

obstacle-controlled dislocation glide, the creep response changes from power-law to exponential

behavior (ASHBY, 1972). Following the approach of MILLER (1976), we adopt GAROFALO'S
(1963) empirical expression for the steady-state Zener parameter, i.e.

(9)

where A > 0, C > 0 and n > 0 are the material constants. For stress states below power-law
breakdown, i.e. when ]tSI] < C, the steady-state Zener parameter of Garofaio reduces to the
power-law relationship

Zs, = A -- , (10)

thereby designating dislocation climb as the rate-controlling mechanism. (Note: A, C and n
are independent in Eqn. (9) but not in Eqn. (10).) Similarly, when the stress exceeds power-
law breakdown, i.e. when Hsll > c, Garofalo's Zener parameter reduces to the exponential
relationship

where A' = A/2 '_ and C'1 = C/n, thereby designating dislocation glide as the rate-controlling
mechanism. The ability of Eqns (7-9) to correlate the stationary creep-rate data of NARIoy Z

is demonstrated in Fig. 1. The material constants obtained from this correlation are given in
Table 2. Because none of these data lie within the power-law domain, the exponential creep

equation, Eqn. (11), was used to determine values for A' and C ' leading to the straight line fit
shown in the log/linear plot of Fig. la, where A' = 5 x 1017 s-1 and C' = 3.5 MPa for the
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Constant Units Value
A s -1 8 x 10 is

C MPa 14
n -- 4

Q J/tool. 450,000
T,_ K _ 1350

T, = _/2T,,_

Table 2: Steady-state creep constants for NAPdoy Z.

predefined values of Q = 450,000 J/mole (LEwis, 1970) and Tt = 400°C (assumed). Taking

n = 4 (assumed), the values for A' and C' have been converted to those of A and C that are
reported in Table 2. The result is the curved line presented in the log/log plot of Fig. lb.
We note that the value of C for NARloy Z, 14 MPa, obtained with this choice for n, 4, is in

agreement with the value of C for Cu, 13 MPa, reported in FREED and WALKER (1993).
This continuum representation for creep is well established. Our viscoplastic model reduces

analytically to this creep model under steady-state conditions. Hence, the material constants
that characterize this creep model also appear in our viscoplastic model, which simplifies sub-

stantially its characterization process.

4 Viscoplastic Flow

A general mathematical structure for viscoplasticity (FREED et aI., 1991) may admit up to
three kinds of internal state variables; they are: i) the (scalar-valued) drag strength, D > 0; ii)

the (scalar-valued) yield stress, Y > 0; and iii) the (deviatoric tensor-valued) back stress, B_j.
The drag strength and yield stress account for isotropic hardening effects, while the back stress

accounts for kinematic (flow-induced anisotropic) hardening effects.
PRAGER'S (1949) constitutive relation is used to describe the evolution of viscoplastic flow,

i.e.

_{%: 1/2i1_11s{_-_,j (12)
IIS-BII "

This particular choice for the flow law implies that a nested set of flow surfaces exists; they
are surfaces of constant plastic strain-rate when evaluated under isothermal conditions. This

constitutes a set of ellipsoids in deviatoric stress space that are centered on the back stress.
The kinetics of viscoplasticity are taken to be described by a ZENER and HOLLOMON (1944)

type decomposition of state (FR_',_",r)el al., 1991), viz.

where the Macauley bracket, <(IIS-BII- Y)/DI, has either a value of 0 whenever IIS-BII <

Y (defining the elastic domain), or a value of (llS- BII - g)/D whenever IIs- Nil > Y
(defining the viscoplastic domain), with IIs-BII = Y establishing the yield surface. Many
viscoplastic models have no distinct yield surface, i.e. they set Y to 0. The distinguishing feature

between viscoplasticity (a rate-dependent theory) and plasticity (a rate-independent theory) is
that viscoplasticity admits states both inside and outside of the yield surface (governed by a

kinetic equation of state); whereas, plasticity admits only states that are inside and on the yield
surface (governed by a consistency condition), but not outside of it. As a consequence, the
plastic strain-rate is continuous as one moves from the elastic domain across the yield surface
and into the inelastic domain of viscoplastic response; whereas, the accumulation of plastic
strain is discontinuous as one moves from the elastic domain onto the yield surface in plasticity.
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The elastic domMn of many viscoplastic models is shrunk to a point, as they do not admit a

yield surface.

The internal state variables--Bij , D and Y--are described by evolution equations that are

functions of state. The back stress evolves rapidly when compared with the rates of evolution for

the drag strength and yield stress, which is a source of mathematical stiffness in the governing

equations of viscoplasticity. The evolution of the back stress accounts for the change in material

stiffness that is observed during the transition from elastic to plastic behavior, while the evolu-

tions of the drag strength and yield stress account for the more gradual work hardening processes

that are caused by the overall accumulation of plastic deformation. The internal variables are

considered to evolve phenomenologically through competitive processes associated with strain

hardening, strain-induced dynamic recovery, and time-induced thermal recovery. Their specific

functional forms are discussed later in §6.

5 Creep _ Viscoplasticity

In the process of going from creep theory to viscoplasticity, one must remove the steady-state

constraint that is present in creep, and thereby extend the domain of admissible states to

include transient behavior. This is done through the introduction of internal state variables.

Although the purpose of viscoplasticity is to model rate-dependent transient behavior, it is not

unreasonable to also require that it reduces to creep theory under steady-state conditions. An

important objective in our development of a viscoplastic theory is that it reduces analytically to

creep theory when at steady state. Not only is this a realistic requirement, but it also strengthens

the physics of the theory, and it simplifies greatly the proc4ss of model characterization--about

half of our viscoplastic material constants come from correlating stationary creep-rate data
alone.

In order for a viscoplastic theory to reduce analytically to creep theory when at steady state

(i.e. when B -- o,/) -- 0 and Y -- 0 for [t_pll > o) two conditions must be satisfied. First, the

back stress must be coaxial with the stress at steady state so that the directions of plastic strain-

rate defined by Eqns (5 & 12) are also coaxial at steady state. And second, it is necessary that

the kinetics of viscoplasticity, Eqn. (13), reduce analytically to the kinetics of creep, Eqn. (7),

under steady-state conditions. Satisfaction of the first constraint is discussed in §6. To satisfy

the second constraint, one must first hypothesize a relationship between the steady-state and

transient Zener parameters, and then hypothesize another one between the internal and external

variables, when at steady state (FREED and WALKEK, 1990). We therefore suppose that

D ' (14)

in support of Eqn. (13). This relationship implies that the transient Zener parameter, Z, has the

same functional form as the steady-state Zener parameter, Zs_ , but with a different argument;

in particular, and in accordance with Eqn. (9), we take

Z Asinhn[/SBOY/I (15)

which is similar in form to the kinetics of MILLER'S (1976) viscoplastic model, but with a yield

stress and without a power acting on the Macauley bracket.

Furthermore, we shall suppose that

IIBII_=f*AIISlI]IISII , Ds_---Do+S[ISII and Y_=(_-/)_.[IISlI]IISlI, (16)

in support of experimental evidence, where e_ > 0 and 5 > 0 are the steady-state fractions of

applied stress that are associated with the internal stress (i.e. the back and yield stresses) and

the drag strength, respectively, such that 1/2 < cs_ < 1. The parameter f partitions the internal
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stressbetweenisotropicandkinematiccontributions,suchthat0< f < 1.Thefactthatdrag
strengthistaken to be proportional to the Saturation stress is a consequence of the fact that the

drag strength represents the material's innate strength to resist plastic flow, i.e. D is a strength

parameter--not a stress parameter. We take the internal stress to be a nonlinear function of

the applied stress at saturation because that is what the experimental data of ARGON and

TAKEUCHI (1981) and CADEK (1987) suggest. A similar hypothesis to that of Eqn. (16) is

given in FREED and WALKER (1993) for the case where the internal stress is composed of two

back stresses with no yield stress.

Because the applied stress and the back stress must be coaxial at steady state, as.discussed

above, it follows that

I[S - Bliss = [IS H -[[Bl[ss. (17)

Therefore, upon equating the arguments of the Zener parameters in Eqns (7 & 14), while utilizing

Eqns (16 & 17), one obtains the result

C- D° - 61lSl] C-D°+_/(C-D°)2-46C(NBH"_+Y"_) (18)
_s" = C = 2 C

If one uses Eqn. (16) and writes IIB[I,,+Y_s = L_, []]SI[ ] ][S[[, then from Eqn. (18) one determines

that ]IB[I_+_, = (C - Do - 61[S1[)[[SII/C. Because 0 (][B][,_ + Y,,)/O[[S[[ = 0 establishes the

maximum state of internal stress, one is lead to the result

C - Do (19)
IlSll_= - 2s

Substituting this relationship back into Eqns (16 _ 18) gives additional upper bounds for: the

back stress,

(C - Do) 2 (20)
IIBll='==f 4&c '

the drag strength,

and the yield stress,

='/2(c+ (21)

_ (c - Do)_ (22)
Ym_ = (1 -., -_

Similar bounds are given in FREED and WALKER (1993) for the case where the internal stress

is composed of two back stresses and no yield stress. It is a remarkable fact that one can bound

the stress and internal state variables without specifying anything about how these internal state

variables evolve.

Restricting _., to be real valued, and considering _min to be associated with the maximum

attainable magnitude of internal stress, one finds on approaching the limit of zero stress that

the ratio of internal stress to applied stress at steady state is at its maximum, i.e.

C - Do
lim L_ -= _m_, - -_ 1 (23)

IlSll_O C '

which is in reasonable agreement with ARGON and TAKEUCHI'S (1981) and CADEK'S (1987)

experimental observations. Approaching the limit of maximum stress, this ratio attains its

minimum, i.e.
C - Do

lim _s_ _" /_min = -- _" 1/2 (24)
IlSll_ilSll_,= 2 C '

which is in reasonable agreement with LOWE and MILLER'S (1983) and ARGON and BHAT-

TACHARYA'S (1987) experimental observations. A schematic of the steady-state internal stress

versus the applied stress--as predicted by Eqns (16 & 18) with typical values of Do = C/100

and f = 0.6--is presented in Fig. 2. The trends depicted therein are in qualitative agreement
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Figure 2: Schematic of internal stress (back plus yield stresses) at steady state vs. applied stress.

with the experimental results referenced above.

To be physically meaningful, []B[[ _> 0, D > 0 and Y _> 0. Furthermore, their steady-state

values ought to increase monotonically with increasing stress (FREED and WALKER, 1990).

This is verified easily for our hypothesis, Eqns (14, 16 & 17), as long as 0 _< [[B]] _< [[B[Im_ ,
Do < D < Dma_ and 0 < Y _< Ym_x.

6 Evolution of Internal State

The back stress is an internal stress caused by the heterogeneity of dislocation substructures

(NIx and ILSCHNER, 1980) whose evolution is described adequately by the relationship of ARM-

STRONG and FREDERICK (1966), viz.

Bij = 2H _j - _-_ I1_'1[ , (25)

where H[_] > 0 is its hardening modulus, L[D] > 0 is its limiting state, and _ is a normalized

distance between the current position of the back stress in state space and its image point on the

limit surface, as illustrated in Fig. 3. AIFANTIS (1986) derived this evolution equation for back

stress from his single-slip dislocation theory. This nonlinear kinematic hardening rule, made

popular by CHABOCHE (1977) with H and L as constants, is a three-dimensional representation

of VOCE'S (1948) one-dimensional hardening rule. PrtAGER'S (1949) linear kinematic hardening
rule is the special case where H is a constant and L = oo.

The back stress traverses a curve in stress space whose composition is a sequence of incre-

ments, dB_j, wherein each increment lies along the instantaneous line segment joining the back

stress with its current image point, as illustrated in Fig. 3. At kinematic saturation, i.e. when

B = 0 for II_Pll> 0, one can determine straight away from Eqns (12 k: 25) that the plastic

strain-rate, Qj"p , becomes coaxial with both the deviatoric stress, Sij, and the back stress, Bij,

in agreement with both experiment (PHILLIPS, 1986) and the hypothesis stated earlier in §5.

Furthermore, the nested set of flow surfaces, {[[S- B[[ - Y = constant > 0}, becomes stationary

until unloading occurs; otherwise, the center of thi_q set, B_j, translates freely within its limiting

hypersurface, L, as governed by the flow and evolution equations.

The limiting state of back stress, L[D], is considered to depend on the drag strength (FREED

and WALKER, 1993), thereby enabling the back stress to have an isotropic strengthening effect
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Figure 3: Evolution of back stress in state space representation.

(a concept introduced by MARQUIS, 1979). Because there is no explicit term for static recovery
in the evolution equation for back stress, Eqn. (25), thermal recovery can only be introduced

implicitly through a dependence of the limiting state on drag strength. This dependence, or
coupling, enables our viscoplastic model to reduce analytically to creep theory under steady-state
conditions. At kinematic saturation, Ls_[D] = IIBllss which leads to the relationship

L = f (D - Do)(C - D) (26)
6C

where use has been made of the hypothesis given in Eqn. (16). The subscripts 'ss' on D and

_[IISII] in Eqn. (16) have been removed in the derivation of L because steady state is assumed
to be only a special case. It follows that 0 _< IIBII < IIBIIm= provided that Do < D < Dr,=.

A measure of the distance between the back stress, Bij, in stress space and its imaging point,

L(Sij - Bij)/IIS - BII, on the limit (bounding) surface is characterized by

tl (Sij-B_j S_j-B_j _) (27)

where 0 _<_ _< 1. This relationship comes from considenng the state-space geometry shown in

Fig. 3. The chord between the current state of back stress and its image point has length 2(L. A
value of _ = 0 implies that Bi_ is on its limit surface, and that Sij is either on this surface or lies
outside of it. A value of _ = 1 also implies that Bij is on its limit surface, but now Sij lies inside
this surface, i.e. unloading from a saturation state has just begun. The intermediate values

of 0 < _ < 1 imply that Bij is somewhere inside its limit surface. Physically, the parameter
_ simulates the back and forth motion of mobile dislocations. During directibnM deformation
these mobile dislocations become immobilized by obstacles, as represented by _ _ 0. Later,
these immobilized dislocations may be released when the direction of loading is reversed, as

represented by the switching action of _ from _ _-. 0 at the end of loading to _ ._ 1 at the onset

of unloading. This phenomenon is used to influence how we model the hardening and dynamic
recovery behaviors of the internal state variables.

Prior experience in characterizing materiMs where Eqn. (25) describes the evolution of back
stress has lead us to the rule-of-thumb: H _. #/5. Unfortunately, this does not produce a
smooth stress-strain transition between the elastic and plastic domains. This deficiency can be

overcome by introducing multiple back stresses (CHABOCHE and ROUSSELIER, 1983, LOWE and
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(for T = 21 and 538°C) and D[t=o = 2.64 MPa (for T = 315 and 427°C).

MILLER, 1986, and FREED and WALKER, 1993) with different hardening moduli or, as we have

done herein, by making the hardening modulus a function of state. In particular, we have taken

H = (0.1 + 0.9_) #, (28)

such that #/10 _< H _< #. This is similar in concept to the hardening modulus used by DAFALIAS

and PoPOV (1975) in their two-surface theory of plasticity, and by ROBINSON (1978) in his

theory of viscoplasticity. The upper bound, H = #, produces a smooth stress-strain transition

between the elastic and plastic responses. The lower bound, H = #/10, is set arbitrarily such

that our rule-of-thumb value resides at the midpoint in the range of H. Setting the lower bound

at a smaller value will lead to erroneous predictions; for example, when small stress-strain loops

are contained within a larger hysteresis loop, the smaller loops will be too square in shape.

There is no loss of generality by assuming the values 0.1 and 0.9 in Eqn. (28) because the

partitioning parameter, f, between the isotropic and kinematic internal stresses is still at the

modeler's disposal to adjust the shape of, say, stress-strain hysteresis loops.

The drag strength is considered to evolve as a competition between strain hardening and

thermal (static) recovery phenomena, as expressed by

b = h([J_v[[- Or) , (29)

where h > 0 is its hardening modulus, O[T] > 0 is the thermal function of Eqn. (8), and r[D] _ 0

is the thermal (static) recovery function. Herein, the hardening modulus, h, was taken to be a

constant. This is sufficient for an adequate description of the tensile response shown in Fig. 4

for NARloy Z. In FREED and WALKER (1993), we have shown that taking h to be a function of

state is equivalent to introducing a separate dynamic recovery term into the evolution equation

for drag strength, Eqn. (29). Such a nonlinear hardening modulus for drag strength would cause

greater curvatures in the predictions than those that are shown in Fig. 4.

At isotropic saturation, i.e. when/) = 0 for []_P[[ > 0, one readily determines from Eqn. (29)

that r_8 = Z88. Upon substituting Eqn. (16) into Eqn. (9), one therefore obtains

(30)
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Experiment (o) vs. theory (--). _ = 0.004 s -1, T = 538°C, Dlzx,=01009 = 2.19 MPa and

Dlae=0.026 = 2.32 MPa.

which describes MI thermal recovery behavior in our model. Recall that there is no explicit

thermal recovery of the back stress. Again, the subscript 'ss' is deleted from D implying that

transient states are not given special treatment.

Although the effect of a separate, dynamic, recovery term in the evolution equation for

drag strength is not deemed to be important in the monotonic description of NARloy Z (see

Fig. 4), there is an effect similar to that which is very important, viz. the interaction between

monotonic and cyclic plasticity. This effect is illustrated in Fig. 5 where saturated, stress-

strain, hysteresis loops are presented for NARloy Z. If one were to use Eqn. (29) to describe

the evolution of drag strength, then the two hysteresis loops in Fig. 5 would be predicted to

have the same stress range even though their strain ranges differ significantly. Certainly this

does not agree with the experimental results shown, nor is it in agreement with typical metallic

behavior (LANDGRAF et al., 1969). To accommodate this behavior, a dynamic recovery term is

introduced into Eqn. (29) such that

b = h(ll 'I[-h II 'II- , (2,1)

where A[_] _> 0 is the monotonic/cyclic interaction term with Ass = 0. This evolution law is

similar in form and motivation to the one used by MILLER (1976) in his viscoplastic model.

What distinguishes this dynamic recovery term from others found in the literature is that ours

depends on { instead of D - Do. In order to be compatible with the derivation of r given above,

Ass must be 0. The material function _, which is a measure of the back and forth (directional)

motion of mobile dislocations, is the physically based parameter that we use to describe the

monotonic/cyclic interaction effect. It is a much simpler concept to utilize, especially under

non-isothermal conditions, than the idea of a strain memory surface introduced by CHABOCHE

et aI. (1979).

The monotonic/cyclic interaction function is taken to be described by a simple linear rela-

tionship, viz.

A = e_, (32)

where g > 1 is a material constant. This has the desired property that Ass = 0 because _** = 0.

Also, since { is bound by 0 and 1, A is bound by 0 and g. If there is to be any interaction effect
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at all, g must be greater than 1 so that the quantity I1¢1_11- A Iltsll may become negative valued

during unloading.

Because the drag strength and yield stress are both isotropic internal variables, they most

likely both evolve clue to the same physical mechanism--a variation in the dislocation density.

Consequently, only one of these two internal variables, the drag strength, is taken to be an

independent variable. We therefore assume that the yield stress can be described as a state

function of drag strength, i.e. Y[D], which helps keep our viscoplastic model simple. Taking

the expression for Y_s[IISH given in Eqn. (16), combining it with Eqn. (18), and then using the

expression for IISH[D_s] also given in Eqn. (16), one obtains

y = (] _ f)(D - D0)(C- O)_c ' (33)

where the subscript 'ss' has been removed, implying that transient states are not given special

treatment.

7 The Model

Here we combine the results of the previous sections to give a succinct description of our vis-

coplastic model. The stress is acquired through the constitutive equations

: and : • (34)
The flow equation and kinetics that describe plastic straining are given by

S_i- Bii

<] = ,/2II_PllIIS-BII and II_Pll= _ Z, (35)

respectively, with the von Mises norm of effective stress being defined by

IIS- B II= ¢1/2 (s{j- B{j)(S,j- BiJ. (36)

The evolutions of back stress and drag strength are given by

/3_1 = 2H sij - _ II_'tl and b = h(ll_'ll - A II_'ll - _ _) , (37)

respectively, such that Do < D < Dm_, while the yield stress is related through the state
function

Y = (1 - f)(D - Do)(C- D)60 ' (3s)

which is not an evolution equation. Associated with these relationships are the material func-

tions:

when T,<T<T,_

+1)] when O<T<T t

, (39)

Z=A sinhn[< IIs-B] -Y.>] , (40)

H = (0.1+ 0.9_)# and L=f (D-D°)(C-D)6C ' (41)

A=£_ and r= A sinhn[-_] , (42)
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= L

Restricting the drag strength to be bound by the interval Do < D < Dm_ restricts automatically

the remaining variables: 0 _< ]IS]I _< IISII ..... 0 _< IIBII _ IlSllr,_ and 0 _< Y < Ym_x-

For uniaxial loading histories in tension and compression, the above governing equations

hold with the following alterations:

a=E(e-_P-c_(T -To)) , _P:sgn[f-/3]N_3- and /_=3H(gP-3_II_P]I) ' (44)

given that f : fill : 3/2 Sll, fl : /_11 = 3/2 Bll, £ : ell and ¢P = s_l" As for the material

functions, the above equations apply with the following alterations:

This one-dimensional model has been applied to NARloy Z in this paper.

8 Characterization

Of the eleven, temperature independent, material constants required to characterize this vis-

coplastic model, viz. the set {A, C, 6, Do, f, h, g, n, Q, T,_, T,}, the melting temperature,

Tm, and the activation energy for self-diffusion, Q, are physical properties that can usually be

found in the literature (e.g. SHER.BY and WEERTMAN, 1979). If Q is not available, it can be

determined readily from creep experiments (see DORN, 1954, or SHERBY and BURKE, 1968) at

temperatures in excess of about 1/2T,_. Herein, we have set T, = 1/2T,,_, and we have taken Q

from the literature (LEWIS, 1970). Because T,_[NARloy Z] < T,_[Cu] = 1356 K, we took T,_ =

1350 K (its actual value is unknown to us). Thus, the temperature dependence of the model is

established first.

With the thermal function, zg, now characterized by Eqn. (8), one can determine the steady-

state Zener parameter, Z_s = ]l_P]lss/v q, from creep data and plot it against its associated flow

stress, [[SH, as done in Fig. 1 using the norms defined in Eqn. (6). The curve in Fig. lb represents

a fit of GAROFALO'S (1963) creep equation, Eqn. (9), to the data. From this fitting procedure,

one obtains the constants A, C and n reported in Table 2. This completes the strain-rate

sensitivity characterization of the model; it is the characterization of creep described in §3.

The next step in the characterization process is to establish the maximum values that can

be attained by the stress and the internal variables via a determination for the value of 6. One

way to establish its value is to take the ultimate tensile strength at a very low temperature---

e.g. from the literature (Materials Properties Manual, 1986) we found cruit = 325 MPa, or

equivalently ]]Sllui t = 190 MPa, at -82 °C for NARloy Z--and define this value to be the

maximum attainable stress, viz. ][Slim= = 190 MPa for NARloy Z. From Eqn.(19), recall that

]]Sllm= = (C - 90)/26 _ C/26 (because Do << C, typically). Since we already know the value

for C (it is 14 MPa for NARloy Z) from our characterization of creep behavior, one determines

quickly the value for 6 (it is 0.035 for NARloy Z, which is the same value obtained for Cu by

FREED and WALKER, 1993). This derivation requires Do to be small with respect to C. FREED

and WALKER (1993) found Do _ C/100 for f.c.c, metals, and this value is assumed here for

NARloy Z. If data are available, which they are not for NAPdoy Z, one may obtain the value for

Do by correlating an experimental, offset, yield stress with the model's prediction. This requires

a specimen in its softest possible (annealed) state; in such a state, NARloy Z would resemble

Cu.

The partitioning of the internal stress between isotropic and kinematic contributions via f is

the next step in the process of parameter estimation. Saturated, stress-strain, hysteresis loops
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COnstants Units Value

5 -- 0.035

f -- 0.65

h MPa 11

g -- 6.4

Do = C/100

Table 3: Additional viscoplastic constants for NARloy Z.

are suited ideally for this purpose, because in this case the drag strength can be treated as a

material constant. Although it is not necessary, we have found it to be expedient to utilize the

Levenberg-Marquardt minimization method (outlined in the Appendix) to determine an optimal

value for the material constant f (along with D). The outcome is shown in Fig. 5. Even though

f is bound by the interval (0, 1), the partitioning between isotropic and kinematic contributions

in the internal stress, f, is more realistically bound by the interval (0.25, 0.75). Its actual value

is given in Table 3. This completes the characterization for the evolution of back stress.

All that remains for us to quantify is how the drag strength evolves. This is done in two

steps. First, one must ascertain a value for the hardening modulus, h, and second, one must

determine the strength of the monotonic/cyclic interaction effect via g. Values for these material

constants are also given in Table 3.

The hardening modulus h establishes the rate of isotropic hardening. Its value is best ac-

quired from stress-strain curves of annealed material, where the back stress is basically saturated

(i.e. on its limit surface) throughout the test. Consequently, there is negligible influence due

to the monotonic/cyclic interaction term since A _ 0 throughout the test, and therefore the

dynamic recovery term, A I[kPll, can be omitted from the drag strength's evolution law during

this step. Figure 4 presents the model's correlations obtained at this stage of the parameter

estimation process. Once again we have used the Levenberg-Marquardt minimization method

to determine an optimal value for h (along with Dl_=o). There are two distinct values for DI_= o

reported in Fig. 4, which suggests that these tests may have come from two different batches of

material, but this is only conjecture.

The final step in the process of characterizing a material is the quantification of the mono-

tonic/cyclic interaction effect. To accomplish this we reconsider the saturated hysteresis loops

given in Fig. 5, but now the drag strength is allowed to evolve. By adjusting the value of g, which

was done easily through trial and error, the stress range for the loop e = +0.0045 in Fig. 6 was

fit, while the remaining loops are given as theoretical predictions. The loops for e = 4-0.0025

and 4-0.0075 have no experimental data for comparison. The larger the value for g, the greater

the curvature in the cyclic stress-strain curve, which can be described by connecting the tips of

the fully-reversed, stress-strain, hysteresis loops of differing strain ranges.

9 Closure

By designing the development of our viscoplastic model in such a manner that it reduces an-

alytically to a creep model under steady-state conditions, we have incorporated some essential

physics into our model, and we have also simplified greatly the process that one must go through

in order to characterize a material with this model. In this sense, we have developed a viscoplas-

tic model with an eye towards its characterization. This has particular merit because parameter

estimation of a viscoplastic model is, in general, a complex process that very often prohibits its

use in applications. A model's ease of characterization without the need of exotic experiments

is often considered by many industrial users of viscoplasticity to be of greater value than the

model's ability to predict accurately a material's behavior (within reason). Our model was de-
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Figure 6: Saturated hysteresis loops for NARloy Z. Data are from CONWAY et aI. (1975).

Experiment (o) vs. theory (--). _ = 0.004 s -1 and T = 538°C.

veloped with this fact in mind, where we have sought to strike a balance between accuracy and

ease of characterization using physics as our guidepost.
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Appendix

The determination of the material constants in a viscoplastic model poses many difficulties,

and it is facilitated greatly by using the modified, nonlinear, least-squares method of Levenberg

and Marquardt (PILVIN, 1988). If x,_ denotes the vector that contains the material constants

to be determined, then the computed stress will depend on the material vector z_ and can be

written as a [x,_], where n ranges from 1 to N, with N being the number of unknown material

constants in the vector z,_. The test result corresponding to the computed value of a [x,_] is

denoted by crr. To simplify the discussion, we consider strain, e, to be the controlled parameter

and stress, "a, to be the response parameter. This algorithm may also be applied to the inverse

situation.

The material constant vector, x_, can be determined by minimizing the square of the differ-

ences between the test results and the computed results at the user selected points 1, 2,..., M

belonging to a set of experimental data files. The total number of points in these data files will

usually be much larger than M.

In the minimization procedure, the function to be minimized is

1 M

uEx l= (.4,/
denotes an estimated, or guessed, value for the material constant vector, this vector willIf x_

not result, in general, in a minimum value for the objective function U. Let the vector that does

result in a minimum value be denoted by x,_. Then we can write

G
x_ = z_ + Ax_ , (A2)

where Ax_ is the amount, or correction, that must be added to the guessed value to produce

c is close to the true vector, x_, thenthe value which minimizes U. If the guessed vector, x,_,

c By expanding the objectivethe correction vector, Ax,_, will be small in comparison with x_.

function into a Taylor series, the correction vector can be determined by solving the linear

system of equations
N

A,qAxq = b, for p = 1, 2, ..., N, (A3)
q=l

where

" (.44)

Because only the first term in the Taylor series is kept in the preceding expansion, the solution

vector, Ax,_, is not exact; hence, iterative improvements must be made. This is the method

of nonlinear least squares (also called the Hessian method). In application, the derivatives in

Eqn. (A4) are found numerically.

Marquardt put forth an elegant algorithm, related to an earlier suggestion of Levenberg, for

varying smoothly between the extremes of the methods of nonlinear least squares and steepest
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descent (PREss et al., 1989). The Levenberg-Marquardt method accomplishes this by altering

the Apq matrix in Eqn. (A4) according to

Am' =(I+A)A_ and A_q' =Apq when p#q, (A5)

and then replacing Eqn. (A3) with

hr

! 2A#Xxq=b for p= 1,2,...,lV. (A6)
q=l

!

When A is large, the matrix Apq becomes diagonally dominant and the algorithm approaches

that of steepest descent; whereas, when A is small, the matrix A_q -_ Apq and the algorithm

approaches that of nonlinear least squares.

The Marquardt-Levenberg method can still produce unacceptably large changes, Axq, in

the material constant vector, xq, if the trial vector is far from its final least squares value. An

acceptable solution procedure which provides a stable approach to the least squares solution can

be obtained by introducing a cutback parameter, e, into the algorithm (WALKER and JORDAN,

1987). The user can then specify that the maximum percentage change, R, in any material

constant is not to exceed an input value of c percent.

The modified numerical recipe then goes as follows:

1. Pick a maximum percentage change in any material constant, say e = 20.

2. Pick an initial value for A, say A = 10.

3. Compute U[x_].

4. Solve Eqn. (A6) for Axe.

5. Compute R = max,= 1 (100 x n_].
xq /

6. If R < c, set cutback parameter e = 1.

7. If R > c, set cutback parameter e = c/R.

8. If U[x_ + eAx,,] > U[x_], increase A by a factor of 10 and return to step 4.

G G
9. If U[x_ + eAx,,] < U[x_], decrease A by a factor of 10 and update x_ _ x_ + eAz,_.

10. Exit if converged, else go back to step 4.

The Levenberg-Marquardt-cutback modifies the solution vector, Axq quite dramatically dur-

ing the least squares solution procedure. For example, when the initial guess for the material

constant vector, x_, in the viscoplastic constitutive equations is far from the optimum least

squares value, the nonlinearity can be large enough to cause the cutback parameter, 4, to be
Gas small as 10 -l°. That is, an element of the material constant vector, x,_, can change by

up to 20% when the change, Axe, in that element is only 10 -l° of that predicted by the

Levenberg-Marquardt procedure. As the solution approaches its optimum least squares value,

the parameter e _ 1 and the change in the material constants is governed by the full least

squares value.
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